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ABSTRACT
Technological products for training the mind that support
subjective well-being are gaining popularity in our daily
lives. Using Electroencephalographic (EEG) signals for neu-
rofeedback is helpful for learning and a promising approach
to train the mind. We introduce MindTrain, a novel, gamified
neurofeedback training environment that allows users to
learn the skill to voluntarily self-regulate their brain activity
in Virtual Reality (VR). MindTrain combines the concept of
implicit control with a mobile consumer EEG-wearable in
an interactive and immersive VR-environment for visualis-
ing the feedback. We tested the feasibility of MindTrain for
training to control states of relaxation and concentration. Our
results prove that MindTrain is a promising novel method
that warrants further investigation within a larger study. Fur-
thermore, the use of the mobile EEG-wearable demonstrates
the potential for bringing MindTrain out of the laboratory
into a real-world context.
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1 INTRODUCTION
Training the brain through meditation techniques and tech-
nical products for improving concentration levels in addition
to relaxing oneself have been slowly gaining prominence
and popularity. Use of phone apps such as Headspace [6]
and other similar products are proliferating in the consumer
space. Learning to self-regulate states of relaxation and con-
centration plays an important role in preventing or even
treating stress and exhaustion for therapy as well as subjec-
tive well-being.
Neurotechnologies such as electroencephalography (EEG) al-
low to measure reactions from the nervous system, and thus,
to gain information about the user’s cognitive or emotional
states. Using EEG-based Brain-Computer Interfaces (BCIs),
feedback about the current neurophysiological state can be
provided to the user [2]. In the clinical domain, BCIs are
mainly used as assistive technologies to support disabled
people [25] and for neurofeedback training (e.g., support-
ing patients suffering from attention deficit hyperactivity
disorder; ADHD; [16]; see [27] for review). Neurofeedback
training is an effective strategy in which people can learn
to implicitly modulate their brain activity, thereby showing
a positive effect on behaviour and cognitive functions [26].
Beside the clinical applications, the introduction of passive
BCIs [28] has led to the exploration of new strategies for
human-computer interaction (HCI). With the rise of new
mobile, user-friendly EEG-wearables, the possible use of
BCIs for training mental states via neurofeedback can be
explored outside classical laboratory environments. Some
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consumer grade EEG headsets like Muse [9] and NeuroSky
[18], already provide techniques for training the mind.
The beginning of the decade saw the introduction of the
Virtual Reality (VR) headset Oculus Rift [24] and its effect
on consumer level hardware grow leaps and bounds. PC
connected headsets such as the Rift and Vive to standalone
VR headsets such as Oculus Go [23] have penetrated into
many homes. VR technologies present a unique opportunity
to provide immersive environments that can simulate a vari-
ety of experiences and have also found an increasing use in
therapy, BCI applications, and neurofeedback [5, 15, 29].

2 RELATEDWORK
Mobile apps such as Headspace [6] or Buddhify [17] use
instruction-based guidance methods for mindfulness and
meditation training [3, 8]. These apps rely upon the users
to follow the given instructions and self-regulate their sub-
jectively evaluated current state of mind without being in a
feedback loop. The Muse EEG headset that provides a feed-
back to the user based on recorded brain activity comes with
its ownmeditation app. Simple auditory feedback in the form
of natural sounds such as rain and chirping birds are used to
signal the user’s current mental state.
Other technologies in combination with BCI can be used to
increase interactivity. The game Meyendtris combines eye-
tracking and passive BCI to adapt its difficulty based on the
user’s current relaxation and concentration [14]. My Virtual
Dream used BCI in an immersive and collective art environ-
ment allowing participants to voluntary influence specific
environmental design parameters in a collective manner [12].
RelaWorld combined VR with a laboratory grade EEG head-
set to introduce a neuroadaptive meditation system. In their
VR environment the neurofeedback was based on the ac-
quired level of concentration and relaxation by using alpha-
and theta-band activity from EEG. They could show that the
VR-enriched neurofeedback training improved participants’
subjective meditative experiences [10].

Contribution of the Paper
We introduce a novel, gamified neurofeedback training envi-
ronment that allows the user to learn the skill of voluntarily
changing their brain activity. Therefore, we combined pas-
sive BCI with a mobile consumer EEG-wearable and VR,
to create an interactive and immersive environment. Thus,
we explored how the interactive, gamified environment en-
abled users to train to control their mental states of relax-
ation and concentration. Furthermore, the use of the mobile
EEG-wearable demonstrates the potential for bringing these
applications out of the laboratory into a real world context.

Figure 1: Setup of the application. A) shows the relation
between hardware and software components. B) shows the
game environment of the MindTrain VR application.

3 SYSTEM OVERVIEW
Figure 1A illustrates our setup comprising the hardware
components and software implementations. The hardware
consists of the Muse EEG headset, the HTC Vive VR head-
set [4] and a VR capable PC. The software implementation
consists of two parts: The VR front-end application for the
game built with the Unity Engine, and a back-end with an
EEG-based machine learning classifier. The back-end is pro-
grammed in Python 2.7 using the open-source BCI Toolbox
Wyrm [22] in combination with scikit-learn [19]. For data
collection and synchronisation with the VR environment we
used the Lab Streaming Layer (LSL; [11]) and the BlueMuse
application [13].

VR Front End Implementation
The VR front end consists of two parts: a) the calibration
scenario and b) the game scenario (see Figure 1B). The calibra-
tion scenario is needed in order to train a machine learning
model that can be later used in the game scenario to provide
real-time feedback based on the recorded brain activity.

a) Calibration Scenario. A classifier is calibrated in this phase
for two mental states: relaxation and concentration. A cali-
bration run consisted of four phases as indicated in Figure 2A.
In the relaxation phase, the task for the participant is to first
focus on a cross-hair presented in the middle of a virtual
dark room with the explicit instruction to relax.
After 10 seconds, the concentration phase starts: A circle
is shown to the participant that is changing colours with
a frequency of 4 Hz. The participant is asked to count the
number of times the circle turns to the colour yellow. This is
done in order to ensure the participant is in a state of con-
centration. Afterwards, the number is to be told out aloud
by the participant and the correct number appears on the
screen as a feedback.

b) Game Scenario. The game scenario also contains of two
corresponding phases for the mental states: relaxation and
concentration (see Figure 2B). In the relaxation phase, the
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Figure 2: The process flow for the two application phases.
A) describes the calibration phase flow. B) shows the game
phase flow.

participant is placed in a virtual space with a stationary large
purple sphere in front. The main objective of the game is
to destroy this large sphere named Boss. There are several
small spheres of a uniform colour, chosen at random, that are
moving around following random paths. The participant is
instructed to relax, thereby effecting the speed of the moving
spheres. When the participant succeeds in reaching a state of
relaxation, the speed of the spheres decreases progressively
to a standstill. This approach was achieved by coupling the
classifier output to the speed of the spheres. As a reward for
successful achievement and maintenance of a certain rate of
relaxation, the participant reaches the next game phase. In
case of failure, the speed of the spheres increases again as
an implicit punishment.
In the concentration phase, the Boss starts pulsating in ran-
dom colours similar to the concentration task during cali-
bration. First, participants have to note the current colour of
the small spheres that are standing still. Then they are asked
to count the number of times the Boss turns to the respec-
tive colour as a concentration exercise. After 10 seconds, a
beam appears to be shooting from the eye level and set to
the orientation of the VR headset. This beam can be used
to select multiple small spheres by pointing at them. The
participant is asked to select as many spheres as counted.
The discrepancy in selected spheres and actual frequency of
the large sphere’s colour is used to calculate the damage that
can be caused. The participant can then shoot the collected
small spheres towards the Boss by pointing at it through the
beam. The consistency of the user staying in concentration
state according to the classifier is proportional to the number
of actual shots. The participant is penalised by decreasing
the number of shots or not providing any shots at all if the
consistency of concentration is not maintained. The game
ends when the Boss is destroyed.

Figure 3: The flow chart shows the process of EEG data ac-
quisition, analysis, and relationship between the calibration
and game phases.

EEG Back end
A supervised classifier based on Linear Discriminant Anal-
ysis [21] is used for the discrimination of relaxation and
concentration (see Figure 3). Filter Bank Common Spatial
Pattern (FBCSP) [1] is used to extract features from the data
in frequency bands known to correlate with concentration
and relaxation: the theta band (4-8 Hz) and the alpha band (8-
13 Hz) of the frontal electrodes [5, 10]. Concentrating on
these frequency bands also avoids the possible influences
of muscular activity in the EEG signals, which are usually
above 30 Hz [7]. Afterwards a Sequential Forward Selection
(SFS) procedure [20] is used for dimensional reduction of the
feature space.
For the data in the calibration phase, 10 second blocks from
the concentration and relaxation phases are grouped sepa-
rately. Each of these is split into non-overlapping 5 second
time windows that is then fed to the FBCSP. However, for on-
line classification during the gameplay we use a ring buffer
with a time window of 5 seconds of EEG data and a sliding
window of 1 second similar to [14]. The classifier provides
real-time prediction of the participant’s mental states during
the main game. The probability prediction for each mental
state affects speed of the small spheres in the relaxation phase
and the number of shots in the concentration phase. In the
relaxation phase, participants are rewarded if they have re-
laxation classifier probability of more than 0.5, by decreasing
the speed of the small spheres, else penalised by increasing it
proportionally to the actual probability. Similarly, in the con-
centration phase, the participants are penalised by reducing
the number of shots or rewarded by increasing the number
of shots proportional to the classifier output.

4 EVALUATION PROCEDURE
To evaluate the MindTrain system, participants were invited
for a pilot study. Four participants took part in the study
(two males, two females) with an age ranging between 19
and 34 (M= 25, SD= 6.48). Three of them had experienced
VR applications before while two were familiar with EEG.
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Part. PPV NPV ACC
1 0.87 0.72 0.78
2 0.78 0.8 0.79
3 0.73 0.73 0.72
4 0.69 0.68 0.69

Mean 0.77 0.73 0.75
Table 1: The positive prediction value (PPV, precision), neg-
ative prediction value (NPV), and classification accuracy
(ACC) from the calibration where the relaxation state is pos-
itive and the concentration state is negative.

To quantify the skill of voluntarily changing their brain ac-
tivity we measured the time participants needed to bring
the small spheres to a standstill during the relaxation phase
which is based on the classifier output. In addition, number
of runs they required to defeat the Boss is also recorded. Fur-
thermore, the probability output of the classifier during the
relaxation and concentration phases was calculated in the
main game. During the study, participants sat comfortably
on a chair in a quiet room. TheMuse headset was first placed
on the participant’s head followed by the VR headset and
checked for good signal quality. After the calibration, the
participant was given a trial run for the main game with
the experimenter simulating the output of the classifier. To
gather training data for the classifier, each participant went
through 20 calibration runs in total. The game scenario was
then started with the online-classification till the Boss was
destroyed. During both the calibration and game sessions
the participants were instructed to perform no movements
to minimise the influence of muscular activity.

5 RESULTS
The calibration model for each user was verified to test the
quality of the trained model using stratified K-fold cross-
validation with a fold value of 5 with the classification results
shown in Table 1.
Figure 4A shows the mean value of the time needed to have
the small spheres come to a standstill across all relaxation
phases per participant. The mean value across all partici-
pants was M= 26.4 seconds (SD= 10.01). The results indicate
that those participants that needed a longer time to reach
the state of relaxation, were not able to maintain it steadily.
Figure 4A also shows the number of runs needed to complete
the game per participant. This number was related to their
performance during the concentration phase of the game-
play.
Interestingly, Figure 4B shows that participants who on av-
erage needed more runs showed a decreasing trend of time

Figure 4: Gameplay results. GraphA) shows both the average
time the user needed to complete the task in the relaxation
phase and the number of runs to complete the game. Graph
B) shows the relaxation time over the runs.

needed to bring the small spheres to standstill with each
consecutive run.

6 CONCLUSION AND FUTUREWORK
In this work we introduced a novel, gamified neurofeedback
environment in which we combined a passive BCI approach
with VR and a mobile consumer EEG-wearable. We found
that the EEG-wearable showed a good performance for such
applications. Interestingly, participants exhibited different
abilities to either modulate their brain activity during the
relaxation phase or to stay concentrated in the pilot study. It
seems that there is a trade-off between being good at concen-
trating compared to coming down to a relaxation state. Thus,
our system allows participants to train themselves to control
their states of relaxation and concentration. The feedback
from the participants in the pilot study and the results are
encouraging to show the effectiveness of our system.
Our pilot study also laid a foundation for possible future
improvements and research. We plan to modify the game
mechanics in the next version and couple the strength of
ammunition to the classifier output. Furthermore, we foresee
a level based game scenario, where the difficulty scales with
the participant’s performance over time. Lastly, we will also
research into other possible calibration tasks for the collec-
tion of training data that might further optimise the game
mechanics. In addition, studies on a larger scale are neces-
sary to study the utility of our novel method for training the
mind.
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