

Decoding Neurophysiological Correlates of Cognitive and Affective States

Katharina Lingelbach

Background

- Robust decoding of activation patterns associated with affective and cognitive states is crucial for neuroergonomics applications [1,2]
- In naturalistic environments, mental states do not occur isolated but rather interact with each other
- Electroencephalographic (EEG) recordings capture activation patterns associated with the current emotional states and level of working memory load
- Training decoding model requires labels that represent the assumed true current state, that is the ground truth (GT)

Aim of the Research

Investigate the decoding performance of simultaneously induced cognitive and emotional states

2 Investigate how the **choice of the ground truth (GT)** affect the decoding performance

Reference ratings from the IADS as GT

Individual subjective ratings as GT

EEG data from five participants (2 female, 1 diverse; $M = 23 \pm 1.02$ years)

Experimental Procedure

Emotional states: Simultaneously induced during the task with sounds of the International Affective Digitized Sounds (IADS) database with **low** (negative), **average** (neutral), and **high** (positive) **valence** [9]

Workload levels: Elementary calculation with either **1-digit** (low working memory load, LWML) or **2-digit numbers** (high working memory load, HWML)

EEG Processing Pipeline

Average Decoding Performance

Reference ratings from the IADS

High decoding performance of interacting mental states for reference ratings as labels with averaged balanced accuracies between 88.6 % and 94.4 %

 Chance-level decoding performance for subjective labels with averaged balanced accuracies between 50.2 % and 66.2 %

Take Home Message

1 We could decode simultaneously experienced cognitive and emotional states with **high classification accuracy when** using the reference ratings as a ground truth but not when using the individual subjective ratings.

2 Decrease in decoding performance for the **subjective labels** might be explained by **modulating effects** (e.g., social desirability or limited ability to reliably estimate past experiences)

3 Further research is needed to a) investigate **reasons for observed discrepancy** and b) obtain suit**able GT and calibration tasks for Brain-Computer Interface** training models

Questions?

Katharina Lingelbach PhD Student University Oldenburg Fraunhofer IAO - Applied Neurocognitive Systems katharina.lingelbach@iao.fraunhofer.de +49 711 970 5342

Reference

 [1] Appriou et al. (2020). Modern Machine-Learning Algorithms: For Classifying Cognitive and Affective States From Electroencephalography Signals. IEEE Syst. Man Cybern. Mag. 6, 29–38. doi: 10.1109/MSMC.2020.2968638
[2] Vukelić, et al. (2020). Oscillatory EEG Signatures of Affective Processes during Interaction with Adaptive Computer Systems. Brain Sci 11. doi: 10.3390/brainsci11010035
[3] Bradley, M. M., and Lang, P. J. (2007). The International Affective Digitized Sounds (IADS-2): Affective ratings of sounds and instruction manual. University of Florida, Gainesville, FL, Tech. Rep. B-3.

Funding

This work was supported by grants from the Baden-Wuerttemberg Ministry for Economic Affairs, Labour and Housing (Project »KI-Fortschrittszentrum Lernende Systeme und Kognitive Robotik«).

